129 research outputs found

    Evolutionary Stability Of Fungal-Bacterial Endosymbioses

    Full text link
    Many eukaryotes interact with heritable endobacteria to satisfy diverse metabolic needs. Of the characterized fungal-bacterial symbioses, endobacterial associations with the Gigasporaceae (Glomeromycota) and Rhizopus microsporus (Mucoromycotina) are the best described. Both fungal hosts associate with closely related bacterial endosymbionts from the Burkholderia lineage of [beta]-proteobacteria. Through investigating patterns of co-divergence between partners, we have shown that the Glomeribacter-Glomeromycota symbiosis is at least 400 million years old, while still remaining non-essential for the host. To further explore what adaptations have taken place to allow for the persistence of this association, we created a computational pipeline which utilizes patterns of adaptation to infer microbial lifestyle. We show that this pipeline is effective at inferring microbial lifestyle, and that genes involved in DNA regulation, energy metabolism, and pathogenicity are likely important for survival of Ca. Glomeribacter within their fungal hosts. Additionally, we identified that non-essential endosymbionts are as effective at purging slightly deleterious mutations from their genomes as free-living organisms. Unlike Glomeribacter, Burkholderia rhizoxinica, the endosymbiont of Rhizopus microsporus is capable of free living yet is simultaneously of great importance to host survival. Our work has revealed that endosymbionts are required for sexual reproduction of the fungal host. Through phenotypic observation and transcriptome profiling, we found that endosymbionts control fungal reproduction through hijacking of host reproductive machinery. Specifically, bacteria control expression levels of Ras2, a signaling protein important for reproductive development as well as filamentous growth. We also exploited endosymbiont control over reproduction to explore conservation of sexually relevant genes across Fungi, including the Mucoromycotina. This approach identified several genes that appear core to all fungal reproduction, as well as reproduction related genes which are specific to members of the Mucoromycotina. In particular, we found two candidate class C seven transmembrane G-protein coupled receptors (GPCRs), TriR1 and TriR2, which may be responsible for perception of trisporic acid during mating in Mucoromycotina. These receptors are closely related to the retinoic acid GPCRs present in animal systems

    Phylogenomic analyses of non-Dikarya fungi supports horizontal gene transfer driving diversification of secondary metabolism in the amphibian gastrointestinal symbiont, Basidiobolus

    Get PDF
    Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. However, the fungi rich in SM production are taxonomically restricted to Dikarya, two phyla of Kingdom Fungi, Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus . Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont

    Defining the eco-enzymological role of the fungal strain <i>Coniochaeta</i> sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium

    Get PDF
    Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium

    Genome expansion by allopolyploidization in the fungal strain <i>Coniochaeta </i>2T2.1 and its exceptional lignocellulolytic machinery

    Get PDF
    Background Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). Results The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting similar to 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (alpha-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. Conclusions We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species

    Genomic and genetic insights into a cosmopolitan fungus, Paecilomyces variotii (Eurotiales)

    Get PDF
    Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.Peer reviewe

    Full genome of Phialocephala scopiformis DAOMC 229536, a fungal endophyte of spruce producing the potent anti-insectan compound rugulosin

    Get PDF
    We present the full genome of Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota), a foliar endophyte of white spruce from eastern Quebec. DAOMC 229536 produces the anti-insectan compound rugulosin, which inhibits a devastating forestry pest, the spruce budworm. This genome will enable fungal genotyping and host-endophyte evolutionary genomics in inoculated trees

    A comparative genomics study of 23 Aspergillus species from section Flavi

    Get PDF
    Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.Peer reviewe
    • …
    corecore